Bästa batteriladdaren.....vilken

Det var väl själve fan....

Att det ska vara så svårt att fråga om pris Jörgen!
Nä surfa runt på Clas i sjön och allt vad det heter när det finns Exide leverantörer på närmare håll.

Basta?

Vad är exide? Har de en 7 amp laddare jag kan sätta i båten?
 
Eeeeh...
Typ världens största batteriföretag som bland annat äger Tudor, Chloride, Ctek, å så vidare...
Hitta ett batteriföretag som dom inte äger... ok Varta äger dom inte.

Aaahh! Nu fattar jag. Jag googlade. Tänkte inte på dina batteri-känningar.
Jo jag ska köpa en C-tek 7000 till båten tänkte jag. De sålde ju den också såg jag. Jag kanske skulle kollat med dig först inser jag nu! :D
 
Ok! :tummenupp. Den rean skulle jag ha uppskattat när jag köpte min. Tror att jag gav 790:- för min på Watski Erstagatan för tre år sedan. normalpris då var ca 1000:- Men det är säkert så att C-tek nu succesivt anpassar priserna när kineskopiorna väller in. Såg en kineskopia på C-tek 90 för runt 290:- på Lidl i en kampanj, exakt samma hölje. :D


Sån köpte jag på Lidl, funkar klockrent.:tummenupp
 
Här har ni lite att bita i!

Egenhändigt snott ur en KTH-skrift.
Tyvärr saknas bilderna.
Läs. Lär.

Batterier
Det blir allt vanligare med utrustningar som drivs med batterier. I bilen, i skruvdragaren, i bärbara datorer, i MP3-spelare och mobiltelefoner - vi kommer alla dagligen i kontakt med batteridrivna utrustningar.

Det kan gälla sk. primärbatterier, som innehåller en bestämd mängd energi, och som kastas och ersätts när denna förbrukats, eller sk. sekundärbatterier som kan laddas upp och ur med energi gång på gång.
(Om dom sköts på rätt sätt ...).

Idag finns det många olika typer av batterier att välja mellan, var och en med sina brister och förtjänster.
Primärbatterier har funnits sedan år 1800 då Alessandro Volta byggde en "stapel" av zink- och silverplattor med saltindränkta läskpapper emellan. Ju fler plattor som ingick i stapeln desto kraftigare "stöt" fick han när han berörde den. Det är för att hedra denna händelse som enheten för den elektriska spänningen är Volt.



Praktiskt hanterbara och ekonomiska batterier har vi haft sedan 1890-talet i form av det sk. brunstensbatteriet. Det är den klassiska batteritypen till tex. ficklampor, och andra tillämpningar där lågt pris är viktigare än hög kapacitet. ( Ett typexempel på användning av brunstensbatterier är till ljusen i luciakronan - 30 minuter en gång om året ).
Det är den batterityp som är lättast att ta om hand vid våra miljöstationer.


Den elektrokemiska cellens funktion
Ett enkelt batteri, eller elektrokemisk cell, har energin lagrad inom sig i elektrodmaterialen och i de ingående kemikalierna. När vi tar ut elektrisk energi ur batteriet omvandlas den elektrokemiska energin till elektrisk, och en del av kemikalierna förbrukas.

Om en metall doppas ned i en elektriskt ledande vätska, en elektrolyt, så sker det ett utbyte av elektroner mellan metallen och vätskan. En del av metallatomerna blir laddade, blir till joner, och ger sig ut i vätskan. Det bildas då en liten elektrisk spänning mellan metallen och elektrolyten, storleken på denna beror på vilken metall det gäller. Så ger tex. Litium och Zink upphov till en negativ spänning, medan Koppar, Silver och Kvicksilver ger positiv spänning. Batterikonstruktörer försöker hitta två material med så stor spänningsskillnad som möjligt, eftersom det är den skillnaden som blir cellens spänning.
Om två sådana olika metallstycken, elektroder, placeras i en elektrolyt så uppkommer det en kemisk reaktion mellan jonerna från dessa. Det ena ämnet förlorar en elektron, sk. oxidation, medan det andra tar upp en elektron, sk. reduktion ( sammantaget sker det en sk. redox-reaktion ).
Oxidationsreaktionen sker vid den av elektroderna som upptar elektroner. Detta blir den negativa elektroden. Reduktionsreaktionen sker vid den andra elektroden, den positiva elektroden.

När elektroderna på detta sätt blir laddade stöter de bort ytterligare joner så att den kemiska reaktionen avstannar. Om man däremot utanför batteriet ansluter de två elektroderna till varandra med en elektrisk ledare, kommer laddningsskillnaden mellan dem att utjämnas, och den kemiska reaktionen hålls igång.
Resistansen i den anslutna elektriska lasten avgör den kemiska reaktionshastigheten. Den kemiska reaktionen fortgår så länge den elektriska kretsen är sluten och det finns kemiskt aktivt material kvar i cellen.

Urladdningskurva och kapacitetstal
Ett batteris kapacitet utrycks i Ampertimmar [Ah], vilket är samma sak som den laddningsmängd som finns i de kemiskt aktiva materialen i batteriet. Ampertim-talet definieras som den ström [A] som batteriet skulle kunna leverera under en timma för att därefter ta slut.

Ett batteris kapacitetstal C baserar sig på urladdningskurvor från verkliga urladdningsexperiment. Urladdningen sker med konstant ström tills batterispänningen sjunkit till ett slutvärde, EODV ( End Of Discharge Voltage ). Kurvans mittpunkt kallas för MPV ( MidPoint Voltage ) och det är detta värde på spänningen som brukar uppges som batteriets polspänning. Se figuren.
Urladdningen behöver inte nödvändigtvis ha pågått i en timma. Man anger därför urladdningens tid med kapacitetstalets index.
C20 = 60 Ah betyder att urladdningen pågått i 20 timmar och att batteriets kapacitet I×t var 60 Ah. Den konstanta urladdningsströmmen I som användes var då 60/20 = 3 A.

Exempel på kapacitetsberäkningar
Antag att batteriet med kapacitetstalet C20 = 60 Ah används till en glödlampa som "drar" strömmen 1 A. Hur länge räcker batteriet?
Kapacitetstalet är framtaget vid strömmen 3 A. Då kan man utgå från att batteriets kapacitet är oförändrad vid det närliggande strömvärdet 1 A.
Vi får t = C/I = 60/1 = 60 h.

Antag nu att batteriet ska driva en startmotor som "drar" strömmen 300 A. Hur länge räcker batteriet?
Den höga strömmen 300 A är ett helt annat driftfall än det som använts av fabrikanten för att ta fram kapacitetstalet. Av erfarenhet ( här givet ) vet man att batteriets kapacitet blir sämre vid höga strömmar. Därför räknar man med att kapacitetstalet reducerats till 70%.
C' = 0,7×C = 0,7×60 = 42.
Vi får t = C'/I = 42/300 = 0,14 h 0,14×60 = 8,4 min.

Olika urladdningsfall
Ett batteris kapacitet beror naturligtvis på storleken och hur mycket kemiskt aktivt material som finns tillgängligt. Det är anledningen till att man kan köpa så många olika storlekar.
Förutom batteristorleken beror den verkliga kapaciteten i hög grad på vilket sätt som urladdningen går till.


Urladdningströmmen
Vi har redan nämnt att mycket höga urladdningsströmmar reducerar ett batteris kapacitet. Den höga strömmen ger upphov till förluster i batteriets inre resistans, och den energi som kan lämna batteriet blir därför lägre.
Vid normalt strömuttag är kapaciteten 100%, men vid lågt strömuttag blir kapaciteten mindre. Detta beror på att batteriet har en viss självurladdning, elektrolyten har en viss elektrisk ledningsförmåga. Även utan yttre urladdningsström avtar kapaciteten med tiden.

Självurladdningen är temperaturberoende. Man brukar lagra batterier i kylskåp för att minska självurladdningen.
Den viktigaste anledningen till att man använder primärbatterier är att de har mycket lägre självurladdning än sekundärbatterierna.


Intermittent drift
Den som använt en ficklampa i mörker har säker märkt att man får längre livslängd på batteriet om man ger detta tillfälle att då och då återhämta sig. ( Detta faktum har en elektrokemisk förklaring ). Om man har flera batterier kan man växla mellan batterierna så att de får omväxlande urladdas respektive återhämta sig.
Man får då totalt ut mer energi än om man använder batterierna i följd efter varandra. Denna effekt är så utpräglad att den borde utnyttjas av elektronikkonstruktörerna - något som inte sker ännu ...


Batteritemperatur
De elektrokemiska processerna är temperaturberoende. Vid låga temperaturer förmår batterier bara att leverera en bråkdel av den energi som kan utvinnas vid normal temperatur. Den som lyder rådet att lagra batterier i kylskåpet, gör klokt i att vänta med att använda dem tills de värmts upp till rumstemperatur.
Med ökande temperatur sker de elektrokemiska processerna snabbare, detta ger en kapacitetsökning, men observera att denna motverkas av ökad självurladdning vid höga temperaturer.

Förmodligen skulle det löna sig värma/kyla batteriet till en optimal arbetstemperatur även om man skulle ta energin till detta skulle från det egna batteriet!


Cell och batteri
Om man ska vara noga med begreppen så är en cell ett ensamt elektrokemiskt system med egen positiv och negativ elektrod, medan det som kallas för ett batteri är en samling av sådana celler. Termen är lånad från artilleriet där ett batteri är ett antal pjäser som kan avfyras i serie eller samtidigt. Det elektriska batteriet består av celler i serie eller i parallellkoppling. I figuren ovan finns det egentligen bara ett batteri, 9V-batteriet.

I Bilbatteriet har man seriekopplat 6 st 2V-celler för att uppnå totalspänningen 12 V.
Cellerna är av här av en typ som härstammar från fransmannen Gaston Planté ( 1859 ) och som går att både urladda och ladda upp. De kemiska processerna som äger rum vid plattorna är omvändbara, reversibla. Laddningsbara batterier kallas för sekundärbatterier.


Jämförelse mellan olika batterityper
Om man ritar urladdningskurvorna för olika batterityper i samma diagram kan man jämföra deras egenskaper. Figuren gäller vanliga 1,5 V AA-celler som på utsidan ser lika ut, men som inuti är av olika teknologier. Cellerna har urladdats med den konstanta strömmen I = 100 mA. Ytan under urladdningskurvorna är därför proportionell mot den uttagna elektriska energin ( W = U×I×t, I är konstant ).

C-Zn
Brunstensbatteriet tappar fort spänningen och har den lägsta kapaciteten - dock tillräcklig för Lucia-kronans ljus. Egenurladdningen är låg - kanske kan överblivna brunstensceller förvaras i kylskåpet till nästa Lucia?

NiCd
Nickel-Cadmium cellens spänning faller snabbt ned till 1,2 V där den håller sig ända tills slutet. Cellen kan laddas upp. Antingen med strömmen I = C /10 under 14 timmar vilket är 40% längre tid än vad som teoretiskt behövs för att ladda cellen. Vid denna låga laddningsström tål cellen överladdning.
Man kan även snabbladda cellen tex. med strömmen I = C. Laddningen tar då teoretiskt 1 timme, men förutom laddningstiden behöver en "snabbladdare" även övervaka cellens spänning och temperatur eftersom överladdning med denna höga ström är mycket skadlig för cellen.

NiCd-cellens självurladdning är c:a 1%/dygn - efter tre månader är cellen helt tom. Vill man lagra en fulladdad NiCd-cell måste den vara ansluten till en underhållsladdare som hela tiden laddar den med en liten ström som uppväger självurladdningsströmmen ( I = 0,05C ).

Om NiCd-celler ofta laddas upp innan de urladdats helt kan det uppkomma en sk. minneseffekt. Urladdningskurvan sjunker med c:a 150 mV långt innan cellen tagit slut. Detta borde inte ha någon betydelse, men det kan "lura" den batteridrivna utrustningens elektronik att felaktigt indikera "batteriet slut". En fullständig cykel med urladdning följt av uppladdning raderar denna "minneseffekt".

NiCd-cellens uppbyggnad är mycket mer komplicerad än brunstenscellen.
I toppen sitter en säkerhetsventil som släpper ut de gaser som kan bildas vid överladdning med höga strömmar.
Om NiCd-celler hamnar i naturens kretslopp utgör de en stor miljöfara.

NiMH
Nickel-metallhydrid ackumulatorn har högre kapacitet än NiCd-cellen, men för övrigt likartade egenskaper. NiMH-cellen saknar "minneseffekt". Cellen innehåller inga miljöfarliga metaller.

Li
Litium-celler kan ge polspänning på upp till 3,3 V. Det finns 1,5V-celler och det är en sådan som avbildas i diagrammet. Litium är den lättaste metallen och en Litium-cell är c:a hälften så tung som de övriga celltyperna. Självurladdningen är låg så cellen kan lagras i upp till 10 år. Kapaciteten är jämförelsens överlägset högsta - men detta är en mycket dyr cell!

Laddbara Litium 3,3V-celler återfinns i din mobiltelefon.

Alk
Alkaline-cellen är en vidareutveckling av brunstenscellen. Den har mycket högre kapacitet än denna och har därför blivit den vanligaste och mest använda batteritypen.
Numera tillverkas Alkaline-cellerna utan kvicksilver, och de innehåller därmed inga miljöfarliga metaller.


Emk inre resistans och polspänning
Som en enkel modell för batterier brukar man använda en emk ( en ideal spänningskälla ) i serie med en inre resistans. Detta är inga konstanter, utan siffervärden som varierar från driftfall till driftfall och med batteriets "kondition".

Man talar om ett batteris emk E, inre resistans RI och polspänning U ( eller med ett ålderdomligt ord, klämspänning ). Polspänningen är det man kan mäta utanför batteriet. Om man ansluter en last, tex. en lampa, till batteriet så kommer batteriströmmen att ge upphov till ett spänningsfall över den inre resistansen ( I×RI ). Polspänningen blir därför lägre än batteriets emk, E > U. Större batterier, med högre kapacitet, har lägre inre resistans och får därmed en polspänning som ligger närmare emk'en.

Om man ansluter en polspänning som är större än batteriets emk, U > E, så flyter strömmen i den motsatta riktningen. Om det är ett sekundärbatteri, där de elektrokemiska processerna är reversibla, så kommer batteriet att laddas upp.

Kirchoffs spänningslag ger:
U = I×RI + E

Om man förlänger detta uttryck med "I " får man sambandet mellan tre effekter.
U×I = I2×RI + E×I
U×I är effekten till eller från batteriet. I2×RI är effektförlust inuti batteriet och termen E×I är ett uttryck för den kemiska energi som tas ur eller lagras i batteriet.
Om man "överladdar" ett batteri så står även termen E×I för förluster. Vid "överladdning" kan batteriet därför bli överhettat.

Ett batteris uppladdningskurva är i princip urladdningskurvan speglad baklänges. När batteriet är färdigladdat minskar polspänningen i stället för att öka ( -dV ). "Intelligenta" batteriladdare brukar utnyttja detta som "tecken" på att batteriet troligen är fulladdat och avslutar laddningen.

Serie och parallellkoppling

Risken med seriekoppling - omvänd cellspänning
En ficklampa drivs av tre seriekopplade celler. Vi antar att en av dem ( tex. den mittersta ) har sämst kapacitet. Först lyser lampan normalt med tre seriekopplade celler och lampspänningen 4,5 V. Efter ett tag har den "sämsta" cellen tagit slut och då lyser lampspänningen svagare med 3 V. Om man nu fortsätter med att låta lampan lysa kommer den cell som är slut att "ta emot" ström från de andra två cellerna. Cellen kommer att kemiskt laddas upp, men med fel polaritet, till sist med full felaktig cellspänning -1,5 V! Lampan får bara 1,5 V över sig och glöder bara svagt. I det här läget tjänar man på att ta ut det tomma batteriet och ersätta det med en "kortslutningstråd" - då skulle lamspänningen åter bli 3 V.
Exemplet visar att det är viktigt att alla celler i en seriekoppling har samma kapacitet.

Kapacitetstalet C [Ah] för ett seriekopplat batteri blir detsamma som för de enskilda cellerna. Om cellerna har olika kapacitet ( detta bör undvikas ) så bestäms kapacitetstalet av den sämsta cellen - när den är slut är hela batteriet i praktiken obrukbart.

Parallellkoppling av batterier
Celler finns att få i en mängd olika standardiserade storlekar. Ju större storlek desto högre kapacitet. Det enklaste sättet att få högre kapacitet är således att byta till större celler. Eftersom batterier är tunga komponenter så skulle detta ibland kunna leda till en ofördelaktig viktfördelning.
 
I nån av dem hade jag en proffessorsutläggning, då jag själv skrivit om inte spaltkilometer, så iaf spalt-hektometer om just batterier i olika mc-tidskrifter genom åren.
Blev den en sticky?
Nej.

Blev det en Wiki?
Nej.

Gör om gör rätt! (om du orkar)
För dina utäggningar i tekniska ämnen är både intressanta, välskrivna och roliga!
 
Har själv en Optimate III och den gör jobbet:tummenupp
Om den är bättre eller sämre än motsvarande c-tek vet jag inte, har bara konsumentgransgat grannens c-tek i ett par dar och den verkar göra samma jobb.
En nackdel med Optimate III är att den inte är väderskyddad. Alla modeller från CTEK är mer eller mindre väderskyddade (IP65 eller IP44, beroende på modell).
 
Nyheter
Fat Boy Gray Ghost – 35 år efter Terminator 2

2025-års Fat Boy Gray Ghost...

European Bike Week: 2-7 september 2025

Under veckan den 2 – ...

Michael Schumachers Honda Fireblade såld på auktion

Michael Schumachers Honda F...

Dags för Mälaren runt 2025 – 16 augusti

Lördagen den 16 augusti 202...

Retrohoj från Honda presenterad på Suzuka

Under 46:e Coca Cola 8-timm...

Sandvikens franskaste Triumph

I Norrtälje kunde vi se hur...

Hydet Dirt Drag #2 – Helt enkelt skitkul

Den 2 augusti körde Hydet M...

A ride for our child, Tyra

MC-kortegen ”A ride for our...

Mälaren Runt #40 – 16 augusti

Lördagen den 16 augusti kör...

Specialbyggd Yamaha XSR900 GP

För att fira den trefaldige...

Back
Top